Like broccoli, cauliflower, and collards, kale is a descendent of the wild cabbage, a plant thought to have originated in Asia Minor and to have been brought to Europe around 600 B.C. by groups of Celtic wanderers. Curly kale played an important role in early European foodways, having been a significant crop during ancient Roman times and a popular vegetable eaten by peasants in the Middle Ages. English settlers brought kale to the United States in the 17th century.
Both ornamental and dinosaur kale are much more recent varieties. Dinosaur kale was discovered in Italy in the late 19th century. Ornamental kale, originally a decorative garden plant, was first cultivated commercially as in the 1980s in California. Ornamental kale is now better known by the name salad savoy.
The beautiful leaves of the kale plant provide an earthy flavor and more nutritional value for fewer calories than almost any other food around. Although it can be found in markets throughout the year, it is in season from the middle of winter through the beginning of spring when it has a sweeter taste and is more widely available.
Kale is a leafy green vegetable that belongs to the Brassica family, a group of vegetables including cabbage, collards, and Brussels sprouts that have gained recent widespread attention due to their health-promoting, sulfur-containing phytonutrients. It is easy to grow and can grow in colder temperatures where a light frost will produce especially sweet kale leaves. There are several varieties of kale; these include curly kale, ornamental kale, and dinosaur (or Lacinato or Tuscan) kale, all of which differ in taste, texture, and appearance. The scientific name for kale is Brassica oleracea.
Curly kale has ruffled leaves and a fibrous stalk and is usually deep green in color. It has a lively pungent flavor with delicious bitter peppery qualities.
Ornamental kale is a more recently cultivated species that is oftentimes referred to as salad savoy. Its leaves may either be green, white, or purple and its stalks coalesce to form a loosely knit head. Ornamental kale has a more mellow flavor and tender texture.
Dinosaur kale is the common name for the kale variety known as Lacinato or Tuscan kale. It features dark blue-green leaves that have an embossed texture. It has a slightly sweeter and more delicate taste than curly kale.
You can count on kale to provide valuable cardiovascular support in terms of its cholesterol-lowering ability. Researchers now understand exactly how this support process works. Our liver uses cholesterol as a basic building block to product bile acids. Bile acids are specialized molecules that aid in the digestion and absorption of fat through a process called emulsification. These molecules are typically stored in fluid form in our gall bladder, and when we eat a fat-containing meal, they get released into the intestine where they help ready the fat for interaction with enzymes and eventual absorption up into the body. When we eat kale, fiber-related nutrients in this cruciferous vegetable bind together with some of the bile acids in the intestine in such a way that they simply stay inside the intestine and pass out of our body in a bowel movement, rather than getting absorbed along with the fat they have emulsified. When this happens, our liver needs to replace the lost bile acids by drawing upon our existing supply of cholesterol, and, as a result, our cholesterol level drops down. Kale provides us with this cholesterol-lowering benefit whether it is raw or cooked. However, a recent study has shown that the cholesterol-lowering ability of raw kale improves significantly when it is steamed. In fact, when the cholesterol-lowering ability of steamed kale was compared with the cholesterol-lowering ability of the prescription drug cholestyramine (a medication that is taken for the purpose of lowering cholesterol), kale bound 42% as many bile acids (based on a standard of comparison involving total dietary fiber). Amongst all of the cruciferous vegetables, only collard greens scored higher at 46%.
Kale has a definite role to play in support of the body’s detoxification processes. The isothiocyanates (ITCs) made from kale’s glucosinolates have been shown to help regulate detox activities in our cells. Most toxins that pose a risk to our body must be detoxified by our cells using a two-step process. The two steps in the process are called Phase I detoxification and Phase II detoxification. The ITCs made from kale’s glucosinolates have been shown to favorably modify both detox steps (Phase I and Phase II). In addition, the unusually large numbers of sulfur compounds in kale have been shown to help support aspects of Phase II detoxification that require the presence of sulfur. By supporting both aspects of our cellular detox process (Phase I and Phase II), nutrients in kale can give our body an “edge up” in dealing with toxic exposure, whether from our environment or from our food.
It remains unseen yet to see if there are any studies that look directly at kale and its support for our digestive system. However, we have seen studies for kale’s fellow cruciferous vegetable—broccoli—in this regard, and we definitely expect to see future research that looks directly at kale and our digestive function. We predict that one area of digestive support provided by kale will turn out to involve fiber. We feel that 7 grams of fiber per 100 calories of kale is just too much fiber to fail in the digestive benefits category. We predict that a second area of digestive benefits will involve kale’s glucosinolates. The ITCs make from kale’s glucosinolates should help protect our stomach lining from bacterial overgrowth of Helicobacter pylori and should help avoid too much clinging by this bacterium to our stomach wall.
There is no research on kale’s omega-3 content and inflammation, but we would expect this kind of research to show the omega-3s in kale to be an important part of kale’s anti-inflammatory benefits. It only takes 100 calories of kale to provide over 350 milligrams for the most basic omega-3 fatty acid (alpha-linolenic acid, or ALA). We suspect that this amount will be plenty to show direct anti-inflammatory benefits from routine kale intake.
We also have yet to see specific research on inflammation and kale’s vitamin K content. But we know that kale is a spectacular source of vitamin K (one cup of kale provides far more micrograms of vitamin K than any of our World’s Healthiest foods) and we also know that vitamin K is a key nutrient for helping regulate our body’s inflammatory process. Taken in combination, we expect these two facts about vitamin K to eventually get tied together in health research that shows kale to be an exceptional food for lowering our risk of chronic inflammation and associated health problems.
How do you choose the best kale available?
Look for kale with firm, deeply colored leaves and moist hardy stems. Kale should be displayed in a cool environment since warm temperatures will cause it to wilt and will negatively affect its flavor. The leaves should look fresh, be unwilted, and be free from signs of browning, yellowing, and small holes. Choose kale with smaller-sized leaves since these will be more tender and have a more mild flavor than those with larger leaves. Kale is available throughout the year, although it is more widely available, and at its peak, from the middle of winter through the beginning of spring.
To store, place kale in a plastic storage bag removing as much of the air from the bag as possible. Store in the refrigerator where it will keep for 5 days. The longer it is stored, the more bitter its flavor becomes. Do not wash kale before storing because exposure to water encourages spoilage.
The next time you are looking to add a green vegetable to your meal, give kale a shot. It has so many numerous health benefits that you would be doing your body a favor in the New Year.